Incremental Feature Subsetting useful for Big Feature Space Problems
نویسندگان
چکیده
Dimensionality Reduction process is a means to overcome curse of dimensionality in general. When all features are available together, it is a way to extract knowledge from a population in a big feature space. On the contrary, dimensionality reduction is intriguing when update to feature space is streaming and the question arises whether one could reduce the feature space as and when the features become available instead of waiting for all the features to arrive .This could not only enable the creation of knowledge that can incrementally align with the incremental access to feature space, but would also facilitate decision making locally at every incremental stage. While facilitating the local decision making parameters, it would eventually generate the most optimal reduced feature space. Moving in this direction, the possibility of implementing feature subsetting in an incremental framework is explored. The incremental streaming could be due to the temporal arrival of features or due to collection of features arriving from distributed sources. In this paper, the adoption of incremental dimensionality reduction model is also explored to observe the complexity reduction of working with a big feature space. The speciality of the proposed incremental framework is that the dimensionality reduction is performed to obtain a cumulative reduced feature space at every stage without having to look back at the earlier features. General Terms Pattern Recognition, Dimensionality Reduction, Feature Subsetting, Incremental Learning
منابع مشابه
Incremental Feature Transformation for Temporal Space
Temporal Feature Space generates features sequentially over consecutive time frames, thus producing a very large dimensional feature space cumulatively in contrast to the one which generates samples over time. Pattern Recognition applications for such temporal feature space therefore have to withstand the complexities involved with waiting for the arrival of new features over time and handling ...
متن کاملFeature Selection in Big Data by Using the enhancement of Mahalanobis–Taguchi System; Case Study, Identifiying Bad Credit clients of a Private Bank of Islamic Republic of Iran
The Mahalanobis-Taguchi System (MTS) is a relatively new collection of methods proposed for diagnosis and forecasting using multivariate data. It consists of two main parts: Part 1, the selection of useful variables in order to reduce the complexity of multi-dimensional systems and part 2, diagnosis and prediction, which are used to predict the abnormal group according to the remaining us...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملIFSB-ReliefF: A New Instance and Feature Selection Algorithm Based on ReliefF
Increasing the use of Internet and some phenomena such as sensor networks has led to an unnecessary increasing the volume of information. Though it has many benefits, it causes problems such as storage space requirements and better processors, as well as data refinement to remove unnecessary data. Data reduction methods provide ways to select useful data from a large amount of duplicate, incomp...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014